a2 United States Patent

Ross

US009158597B2

US 9,158,597 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CONTROLLING ACCESS TO SHARED
RESOURCE BY ISSUING TICKETS TO
PLURALITY OF EXECUTION UNITS

(75) Inventor: Jonathan Ross, Woodinville, WA (US)
(73) Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 374 days.
(21) Appl. No.: 13/179,344
(22) Filed: Jul. 8, 2011
(65) Prior Publication Data
US 2013/0014120 A1 Jan. 10, 2013
(51) Imt.ClL
GOG6F 9/46 (2006.01)
GO6F 9/52 (2006.01)
(52) US.CL
CPC GOG6F 9/526 (2013.01); GOGF 2209/522
(2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 9/52; GO6F 9/526
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
7,529,844 B2 5/2009 Radovic et al.
7,698,523 B2 4/2010 Pong

2003/0195920 Al* 10/2003
2004/0098723 Al* 5/2004
2004/0215858 Al* 10/2004

Brenner et al. 709/107
Radovic etal. 718/104
Armstrong et al. 710/200

400

DO NOCT TAKE TICKET

2007/0300226 Al* 12/2007 BliSS ..cccoovviviiiviiiinnnnn 718/100

2008/0098180 Al* 4/2008 Larsonetal. 711/150

2010/0250809 Al 9/2010 Ramesh et al.

2011/0072241 Al 3/2011 Chen et al.

2011/0252166 Al* 10/2011 Padalaetal. 710/74
OTHER PUBLICATIONS

Radovic, Zoran et al., “Hierarchical Backoff Locks for Nonuniform
Communication Architectures,” Department of Information Technol-
ogy, Uppsala University, (downloaded from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.13.5657&rep=rep 1 &type=pdf),
Feb. 8-12, 2003, (12 pages), Uppsala, Sweden.

Parson, Dale, “Real-time Resource Allocators in Network Processors
using FIFOs,” Agere Systems, (downloaded from http://www.ece.
northwestern.edw/EXTERNAL/anchor/ ANCHORO04/final manu-
scripts/paper__7.pdf), Jun. 19, 2004, (9 pages).

Corbet, Jonathan, “Ticket spinlocks,” Eklektix, Inc., (downloaded
from http://Iwn.net/Articles/267968/), Feb. 6, 2008, (5 pages).

* cited by examiner

Primary Examiner — Meng An

Assistant Examiner — James J Lee

(74) Attorney, Agent, or Firm — Steve Wright; Judy Yee;
Micky Minhas

(57) ABSTRACT

Access to a shared resource by a plurality of execution units
is organized and controlled by issuing tickets to each execu-
tion unit as they request access to the resource. The tickets are
issued by a hardware atomic unit so that each execution unit
receives a unique ticket number. A current owner field indi-
cates the ticket number of the execution unit that currently has
access to the shared resource. When an execution unit has
completed its access, it releases the shared resource and incre-
ments the owner field. Execution units awaiting access to the
shared resource periodically check the current value of the
owner field and take control of the shared resource when their
respective ticket values match the owner field.

12 Claims, 4 Drawing Sheets

READ CURRENT OWNER FIELD|
VALUE O ASSCCIATED WITH
THE SHARED RESOURCE

401

READ LAST TICKET VALUE £
ISSUED FROM HARDWARE
ATOMIC UNIT

COMPARE
LAST TIGKET VALUE
L AND OWNER FIELD,

REQUEST TIGKET FROM
HARDWARE ATOMIC UNIT
ACCESS SHARED RESOURCE
RELEASE SHARED RESOURCE

INCREMENT OWNER FIELD
VALUE

406

407

408

U.S. Patent Oct. 13,2015

Sheet 1 of 4 US 9,158,597 B2
/‘}) 0
101-1 /\1/01-2
105 105
PROCESSING UNIT | PROCESSING UNIT | 1"
102 [102
CACHE] CACHE |
103-1 103-2
REGISTERS REGISTERS
104[— 104
CORE CORE
/‘1/0 6
o\/(\)/,\u??1 1 MEMORY TICKET GENERATION UNIT
! TICKET
OWNER T 109 108
0, 111-2 107
MULTICORE PROCESSOR CHIP

FIG. 1

U.S. Patent

Oct. 13,2015 Sheet 2 of 4
/‘? 0
SHARED
RESOURCE
203
: CORE

202-1 202-2 202-3

Ax Ay A;

A .|) i
Vs N 7 i 201
\ ~ 7N, .

\ / Pics R :
A * N
TICKET TA
GENERATION OWNER
UNIT o
205 204

FIG. 2

US 9,158,597 B2

U.S. Patent

300

Oct. 13, 2015

Sheet 3 of 4 US 9,158,597 B2
REQUEST TICKET FROM | 39

HARDWARE ATOMIC UNIT

302

READ CURRENT OWNER FIELD /\/

304

AN

CONTINUE WAITING

FiIG. 3

- VALUE ASSOCIATED WITH THE
SHARED RESOURCE

303

COMPARE
TICKET VALUE T
AND OWNER FIELD
VALUEOTON

IFT-O<N
305

ACCESS SHARED RESOURCE /‘/

306

RELEASE SHARED RESOURCE /\/

307

INCREMENT OWNER FIELD
VALUE

U.S. Patent

400

R

404

X

Oct. 13, 2015

Sheet 4 of 4

US 9,158,597 B2

READ CURRENT OWNER FIELD
VALUE O ASSOCIATED WITH
THE SHARED RESOURCE

401

READ LAST TICKET VALUE L
ISSUED FROM HARDWARE
ATOMIC UNIT

403

COMPARE

DO NOT TAKE TICKET

LAST TICKET VALUE
L AND OWNER FIELD

FIG. 4

VALUE O

REQUEST TICKET FROM
HARDWARE ATOMIC UNIT

\A
o
[&)]

'

ACCESS SHARED RESOURCE

\A
()
(o))

RELEASE SHARED RESOURCE

\#
o
N

INCREMENT OWNER FIELD
VALUE

\h
o
Co

US 9,158,597 B2

1
CONTROLLING ACCESS TO SHARED
RESOURCE BY ISSUING TICKETS TO
PLURALITY OF EXECUTION UNITS

BACKGROUND

Multiple computer programs, processes, applications, and/
or threads running on a computer or processor often need to
access shared data or hardware, such as a memory block,
register, device driver, or other common resource. To avoid
data collisions and data corruption, locks are typically used to
limit access to a shared resource to only one process at a time.
This prevents multiple users from concurrently modifying the
same shared data. For example, a group of processes may
each have to acquire a lock before accessing a particular
shared resource. When one process has acquired the lock,
none of the other processes can acquire the lock, which pro-
vides exclusive access and control of the shared resource to
the process that first acquired the lock.

Where multiple execution units try to acquire the same
lock, the ability to acquire the lock may depend in part upon
how fast an execution unit accesses the lock and how often the
execution unit reattempts to acquire the lock when a first
attempt is unsuccesstul. For example, an execution unit that is
remote from other execution units may be at a disadvantage
due to the transmission delay of lock acquisition signals com-
pared to the delays associated with closer execution units. If
two units begin an attempt to acquire the lock at approxi-
mately the same time, the closer execution unit is likely to
always have its request arrive first, and requests from a farther
execution unit are likely to be too late. Additionally, when an
executionunit cannot acquire a lock that was already in use by
another device, the execution unit may back off for a period
and will reattempt to acquire the lock at a later time. In the
meantime, other devices may acquire the lock before the
execution unit has reattempted acquiring the lock. As a result,
if a number of other devices are attempting to acquire the
lock, the execution device may have difficulty acquiring the
lock in a timely manner.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Access to a shared resource by a plurality of execution
units is organized and controlled by issuing tickets to each
execution unit as they request access to the resource. The
tickets are issued by a hardware atomic unit so that each
execution unit receives a unique ticket number. A current
owner field indicates the ticket number of the execution unit
that currently has access to the shared resource. When an
execution unit has completed its access, it releases the shared
resource and increments the owner field. Execution units
awaiting access to the shared resource periodically check the
current value of the owner field and take control of the shared
resource when their respective ticket values match the owner
field.

Existing mechanisms require cache coherence to control
ticket generation. Increasing cache coherence requirements
limit scalability in the system. The mechanism described
herein allows, through implementation of the hardware
atomic unit, scalable non-cache coherent systems that still
support an efficient shared resource arbitration mechanism.

20

40

45

55

2

In one embodiment, multiple execution units may access
the shared resource concurrently. The execution units deter-
mine if they are allowed to access the shared resource by
determining if their unique ticket number is within a concur-
rency number of the owner field value.

The execution units release the shared resource upon
completion of their required access. The execution units
increment the owner field value after releasing the shared
resource.

In one embodiment, the execution units identify a last
ticket number issued by the hardware atomic unit. The execu-
tion units compare the last issued ticket number to a number
one less than the current value of the owner field. If the last
issued ticket number is equal to the number one less than the
current owner field value, then the execution unit may expect
to achieve immediate access to the shared resource and, there-
fore, requests a new unique ticket from the hardware atomic
unit. Ifthe last issued ticket number is not equal to the number
one less than the current owner field value, then the execution
unit does not expect to achieve immediate access to the shared
resource and, therefore, does not request a new unique ticket
from the hardware atomic unit.

DRAWINGS

FIG. 1 illustrates a multicore processor chip according to
an example embodiment;

FIG. 2 illustrates a system, such as a multicore processor,
comprising a core running a plurality of applications or
threads according to one embodiment;

FIG. 3 is a flowchart illustrating a process for providing fair
access to a shared resource; and

FIG. 4 is a flowchart illustrating a conditional access pro-
cess for a shared resource according to one embodiment.

DETAILED DESCRIPTION

FIG. 1 illustrates a multicore processor chip 100 having
cores 101. Although only two cores 101-1, 101-2 are illus-
trated, it will be understood that chip 100 may have any
number of cores 101. Each core 101 has a processing unit 102,
a cache 103, and configuration registers 104. Core bus 105
provides a communication medium for the components of
core 101. Cores 101 communicate via a chip bus 106. Cores
101 may also access an on-chip memory 107 using chip bus
106. One core 101-1 may access and manipulate the cache
103 of another core 101-2. Often, intra-core communications
on bus 105 will be faster than inter-core communications on
bus 106. Multicore chip 100 may have a coherency protocol
or a locking mechanism to allow multiple cores 101 to
manipulate a cache 103 or memory 107 in a coherent and
deterministic manner. Alternatively, FIG. 1 may be a system
with any form of parallel independent processing. It will be
understood that the present invention is not limited to appli-
cations on a multi-core chip.

Shared data or resources, such as shared memory 107 or
shared cache 103, may be simultaneously required for two or
more execution units, such as threads, applications, or pro-
cesses. In prior systems, an atomic lock is often used to
prevent data collisions where two execution units attempt to
access the shared resource at the same time. For example, an
atomic lock instruction is implemented when a first device
accesses the shared resource, which prevents other devices
from accessing the shared resource or changing the lock state.
The lock is a hardware atomic primitive that provides mutual
exclusion among the execution units. An execution unit that
requires exclusive access to a shared resource will repeatedly

US 9,158,597 B2

3

request access until the request is granted. The waiting execu-
tion unit may use any one of a number of well-known mecha-
nisms to reduce communication resource consumption while
requesting access. For example, the waiting execution unit
may issue a new request at regular intervals, or the execution
unit may use exponential back-off to determine when to issue
new requests.

However, there are a certain problems with the mecha-
nisms used in the prior systems. One problem involves the
timing requests to access the resource. A requesting execution
unit, such as a processor or thread, may attempt to reduce
communication congestion by backing off on its retry inter-
val. In this case, as the requesting execution unit uses longer
periods between attempts to access the resource, it allows
other devices more opportunities to acquire the desired
resource instead. As a result, by backing-off, the requesting
execution unitis at a disadvantage compared to other requests
that arrive soon after the release of the resource.

For example, two threads A and B may be waiting for a
resource while a third thread C currently owns the resource.
Thread A tries to acquire the resource, but is denied since the
resource is owned by C. After a brief interval of trying to
access the resource, thread A backs off and waits for a number
of cycles before trying again. While thread A is waiting to
re-try its access, thread C releases the resource and thread B
begins attempts to access the resource. Thread B, which
started its attempts to access the resource after thread A, will
acquire the resource before thread A.

Another problem involves differences in access latencies
within hardware implementing the request. For systems with
non-uniform access latency among components, requesting
execution units that are further away from the atomic lock
hardware are at a disadvantage due to propagation delay of
the request. As a result, a more remote execution unit may be
starved for forward progress by requesters that are closer to
the resource.

For example, three threads A, B, and C may be waiting for
a resource, and thread C may have longer access latency for
the resource than either thread A or B. If all three threads
contend for the resource, then thread A or B will be more
likely to acquire the resource than thread C. Moreover, in the
event that thread A acquires the resource and threads B and C
continue to contend for access, when A releases the resource,
then thread B will be more likely to acquire the resource than
thread C. Furthermore, in the event that thread A attempts to
acquire the resource again before B releases the resource,
when B releases the resource, then thread A will again be
more likely to acquire the resource than thread C because of
thread A’s proximity. As a result, threads A and B may starve
thread C from resource access and may limit thread C’s
forward progress.

In one embodiment, requesters’ access requests for a
shared resource are ordered to make the access process fairer.
A hardware device dispenses “tickets” that guarantee a spotin
a queue of requesting threads. An owner field identifies the
current owner of the shared resource—like a “now serving”
sign—and is used to indicate which ticket currently owns the
resource. When a requesting thread sees the value of its ticket
in the owner field, then that thread has exclusive access to the
associated resources.

Chip 100 includes ticket generation unit 108 that generates
tickets 109. Ticket generation unit 109 is a hardware atomic
primitive that returns a value T, which is an atomically incre-
mented number. The atomic increment of T in each ticket 109
is suited to non-coherent systems as there is no requirement to
gain ownership of a cache-line or bus-lock. Chip 100 may
have multiple shared resources, such as cache 103-1, 103-2.

20

25

40

45

60

4

Chip 100 further comprises Owner storage locations 111
associated with each shared resource. Owner storage loca-
tions 111 may be any dedicated hardware location or a soft-
ware-determined general-purpose memory location. For
example, the owner storage location may be a direct-map
cache location, a hardware register, or a memory location.

The Owner storage location 111 identifies the resource
owner. The value O in storage location 111 indicates the ticket
value T for the current owner of the associated resource. If the
shared resource is to be initialized as available, then the value
0111 is initialized to contain the next value T 109 that will be
returned from the ticket generation unit 108. If a resource is to
be initialized as already held, then O 111 is set to a value that
is one less than the next value T 109 to be returned from the
ticket generation unit 108.

A thread X that requires access to a shared resource first
requests a ticket from ticket generation unit 108. Ticket gen-
eration unit 108 issues a ticket T - to thread X and then atomi-
cally increases the hardware counter 109. Thread X compares
the value of the ticket T, to the current owner O value 111 for
the shared resource. If the value of O 111 does not match the
ticket Ty, then thread X periodically reads the value O 111 for
the resource until O 111 matches the waiting thread’s ticket
value Ty. When O matches the ticket value T, thread X then
owns the shared resource and can operate upon or interact
with the shared resource accordingly. When thread X is fin-
ished with the resource, it increments O 111, which effec-
tively passes ownership of the resource to the next waiting
thread. Owner field O 111 can be considered as protected by
the resource and, therefore, does not require atomic accesses
or special hardware support for updating O 111.
Conditional Acquisition

Once a waiting thread is granted a ticket T, the thread must
continue waiting until it obtains the resource and then must
increment O 111 when finished. Conditional acquisition may
be implemented using compare-and-swap hardware to issue a
ticket T 109 only if an incremented T matches the current
value in O. The conditional sequence, with the hardware
compare-and-swap as the atomic step, is:

Ownner = O; // read by software
P=0-1; // what T must be for conditional wait to succeed
Y = Atomic(P, Owner) {
if(P==T){
T=0+1;
Return P;

}else {

return T;

// increment

If Y—the returned value—is equal to P, then the resource
has been acquired, otherwise the resource has not been
acquired and a ticket has not been granted.

In one embodiment, once an execution unit has taken a
ticket, it must continue to monitor the current value of the
owner field O and, when its ticket value T equals the owner
field value O, the execution unit must access the resource
or—at a minimum—increment the owner field value if it does
not access the resource. An execution unit cannot ignore the
owner field after it has taken a ticket, or the resource will
become stalled and other devices will not be able to access the
resource until the execution unit updates the owner field and
allows the next device in line to access the resource.
Variable Concurrency Level

The example above has a concurrency level of one, mean-
ing only one thread may access to the resource at a time. To

US 9,158,597 B2

5

avoid stalling the resource and/or to allow multiple concur-
rent users, if supported by the resource, the ticket/owner
mechanism described herein may be generalized to an arbi-
trary concurrency level. For a concurrency level “N”—where
N threads are allowed to operate concurrently—a thread is
allowed to access the resource if: T-O<N.

Because multiple threads operate concurrently on the same
shared resource, the update of O 111 must be performed
atomically. In one embodiment, a hardware mechanism iden-
tical to ticket generation unit, which provides an atomic
update for T, can be used to update O. Alternatively, because
the return value of O is not required, the hardware atomic
mechanism for updating O may be configured to provide no
return value. In one embodiment, the mechanism for updating
O may be streamlined as a write for which the thread does not
need to wait for completion.

FIG. 2 illustrates a system 200, such as a multicore proces-
sor, comprising a core 201 running a plurality of applications
or threads A, 202. System 200 includes a shared resource
203 that is used by each of the threads A, ,202. Owner field
204 identifies the current owner of shared resource 203. Each
of'the threads A ,202 may access ticket generation unit 205
to request a ticket T to access shared resource 203. Each
thread A . , 202 compares its ticket, T , to owner field O 204
to determine if it is allowed to access shared resource 203.

For the case of concurrency level of 1 (N=1), each thread
A, 202 evaluates whether its ticket is equal to the owner
field 204 (T, ,=O) and whichever thread has the matching
ticket is allowed to access shared resource 203.

For the case of concurrency level N, each thread A, , 202
compares its ticket T, , to the owner field and evaluates
whether it meets the criteria T-O<N. Any of the threads A,
202 that have a ticket T, , that is within N of O is allowed to
access shared resource 203.

Using the shared resource access mechanisms described
herein provides the following benefits:

1) Threads gain access to the shared resource in the order in
which they present their first request to the ticket-gen-
erating hardware atomic unit.

2) Communication traffic to the hardware atomic unit is
greatly reduced because only one reference per lock
acquisition is required without regard to the level of
contention.

3) Back-off mechanisms implemented by threads waiting
for resource ownership to be passed to them do not
subject those threads to fairness imbalances caused by
the waiting patterns or inter-arrival rates of other
threads.

4) Latency to the hardware atomic unit determines, at most,
which position in line—or which ticket number—is
granted to a thread, but such latency will not lead to
starvation or a continuing arbitration disadvantage.

Implementation Considerations

In one embodiment, the width—in bits—of the atomic
counter that is used to generate the tickets should be wide
enough to count the maximum number of threads, which may
be determined by the number of waiting threads plus the
concurrency level. The minimum number of bits is equal to:
log 2(maximum number of threads plus concurrency level),
where the maximum number of threads is rounded up to the
next power of 2. For example, if the maximum number of
threads is 64, then the bit-width must be at least six bits-log
2(64)=6. In some embodiments, this is the number of hard-
ware threads or logical processors in the system.

In some embodiments, the atomic increment is imple-
mented as a read to a defined address, which returns an
atomically incremented number.

30

40

45

50

6

In some embodiments, the owner field is implemented as
regular memory or as dedicated hardware storage.

In other embodiments, releasing a concurrency level 1
resource can be a non-atomic or an atomic increment of the
owner field value O.

In other embodiments, releasing a resource is implemented
as a load, increment, store, or as one transaction that causes
hardware to increment O, thereby reducing the number of
hardware transactions required to release the resource.

FIG. 3 is a flowchart 300 illustrating a process for provid-
ing fair access to a shared resource. The process illustrated in
FIG. 3 may be applied to a shared resource that may be
accessed by one or many execution units at the same time. The
concurrency parameter—N—is the number of execution
units that may simultaneously access the shared resource. For
concurrency of one, as discussed above, N=1. In step 301, an
execution unit, such as an application, thread, or process that
requires access to the shared resource, requests a ticket from
ahardware atomic unit configured to distribute tickets having
unique values. The shared resource may be hardware or data,
such as a memory block, register, device driver, or other
resource. In step 302, the execution unit reads or otherwise
obtains the current value of the owner field associated with the
shared resource. The owner field identifies the ticket value of
the execution unit that is currently in control of the shared
resource.

In step 303, the execution unit compares the ticket value
(obtained in step 301) and the current owner field value (read
in step 302) to the concurrency level N for the shared
resource. [f T-O=zN, then the execution unit’s ticket is not yet
“up” and the execution unit moves to step 304 and continues
to wait. The execution unit then returns to step 302 where it
obtains a new current value of the owner field. The process
then continues to the comparison in step 303. In step 304, the
execution unit may immediately move to step 302 to obtain an
updated owner field value, or the execution unit may delay for
a predetermined period before moving back to step 302. The
predetermined period may be a fixed or variable interval. For
example, the execution unit may use a backoff procedure to
adjust the predetermined period, which may be employed to
minimize traffic on a communication bus and/or to avoid
collisions with other execution units that may be reading the
owner field.

If the difference between the values of the ticket and the
owner field are less than the concurrency level (i.e. T-O<N),
then the process moves to step 305 and the execution unit is
granted access to the shared resource. If the shared resource
has a concurrency level of one (N=1), for example, then the
execution unit is granted access when the ticket and owner
field values are the same (i.e. when T=0, then T-O=0<N=1).

After the execution unit has completed its use of the shared
resource, the process moves to step 306 where the execution
unit releases the shared resource and then to step 307 where
the execution unit increments the owner field value.

FIG. 4 is a flowchart 400 illustrating a conditional access
process for the shared resource according to one embodiment.
As noted above, once an execution unit receives a ticket, it
must continue to monitor the current owner field to prevent
the shared resource from being stalled. When the issued ticket
number matches the owner field, then the execution unit must
increment the owner field at a minimum, whether or not the
execution unit actually accesses the shared resource. In some
embodiments, an execution unit may not want to wait to
access the shared resource if it is not immediately available.
The process illustrated in FIG. 4 allows an execution unit to
determine whether it can gain immediate access to the shared
resource by “pulling” the next ticket.

US 9,158,597 B2

7

In step 401, the execution unit reads the current owner field
value O associated with the shared resource. In step 402, the
execution unit reads the value L of the last ticket issued by the
hardware atomic unit. In step 403, the execution unit com-
pares the last ticket value L to the current owner field value O.

If the last ticket value L is one less than the current owner
field value O (i.e. L=0-1), then the next ticket issued (i.e.
L+1=T) will immediately own the resource. As illustrated in
FIG. 3, when an execution unit completes its access and
releases the shared resource (306), it then increments the
owner field value (307). Accordingly, the next ticket in line
will have access to the resource.

However, if the last ticket value L issued is greater than
(O-1) where O is the current Owner field value, then the next
ticket pulled will have to wait for access to the resource.

In flowchart 400, when the execution unit cannot gain
immediate access to the shared resource (i.e. L=0-1), then
the process moves to step 404 and the execution unit does not
take a ticket. Instead, the execution unit may proceed with
other operations and may reattempt access to the shared
resource at a later time and/or attempt to access a different
resource.

On the other hand, when the execution will gain immediate
access to the shared resource (i.e. L=0-1), then the process
moves to step 405 where the execution unit requests a ticket
from the hardware atomic unit. The process may then move
immediately to step 406 where the execution unit accesses the
shared resource. Alternatively, between steps 405 and 406,
the execution unit may follow the process illustrated in FIG.
3 to verify that it actually has immediate access to the shared
resource.

After the execution unit has completed its use of the shared
resource, the process moves to step 407 where the execution
unit releases the shared resource and then to step 408 where
the execution unit increments the owner field value.

In other embodiments, the execution unit could simply
read the next ticket value from the hardware atomic unit to
determine if the next ticket matches the current owner of the
shared resource. However, in some embodiments, such read-
ing of the next value in the hardware atomic unit may be
equivalent to issuing a new ticket, which would then require
a device to continue to monitor owner field and to wait for a
turn to access the shared resource and/or to increment the
owner field. Instead, when a ticket is issued, the value of the
last-issued ticket may be stored in a location that is accessible
to the cores.

The process illustrated in flowchart 400 is for the case of
concurrency level one, but may be generalized to allow higher
concurrency levels N. For example, if the next ticket T minus
the concurrency level N is less than the current owner value
(i.e. T-N<O), then the next ticket T will not have to wait for
access to the resource. In terms of the last ticket value L (i.e.
L=T-1), this can be represented as L-N<O-1.

It will be understood that steps 301-307 of the process
illustrated in FIG. 3 and steps 401-408 of the process illus-
trated in FIG. 4 may be executed simultaneously and/or
sequentially. It will be further understood that each step may
be performed in any order and may be performed once or
repetitiously.

Many of the functions described herein may be imple-
mented in hardware, software, and/or firmware, and/or any
combination thereof. When implemented in software, code
segments perform the necessary tasks or steps. The program
or code segments may be stored in a processor-readable,
computer-readable, or machine-readable medium. The pro-
cessor-readable, computer-readable, or machine-readable
medium may include any device or medium that can store or

35

40

45

8

transfer information. Examples of such a processor-readable
medium include an electronic circuit, a semiconductor
memory device, a flash memory, a ROM, an erasable ROM
(EROM), a floppy diskette, a compact disk, an optical disk, a
hard disk, a fiber optic medium, etc.

The software code segments may be stored in any volatile
or non-volatile storage device, such as a hard drive, flash
memory, solid state memory, optical disk, CD, DVD, com-
puter program product, or other memory device, that provides
computer-readable or machine-readable storage for a proces-
sor or a middleware container service. In other embodiments,
the memory may be a virtualization of several physical stor-
age devices, wherein the physical storage devices are of the
same or different kinds. The code segments may be down-
loaded or transferred from storage to a processor or container
via an internal bus, another computer network, such as the
Internet or an intranet, or via other wired or wireless net-
works.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A memory device having program instructions stored
thereon that, upon execution by processor of a computer
system, cause the computer system to:

assign a current-owner value to a shared resource, the

current-owner value identifying a ticket value that is
eligible to be granted current access to the shared
resource;

issue a first ticket value to a first process by a ticket pro-

vider, the ticket provider configured to issue ticket val-
ues that are used to determine access to the shared
resource;

allow the first process to access the shared resource when a

difference between the first ticket value and the current-
owner valueis equal to or smaller than a selected number
of allowed concurrent processes, wherein the selected
number of allowed concurrent processes is greater than
one;

increment the current-owner value when the first process

has finished accessing the shared resource;
obtain, by a second process, a last-issued-ticket value from
the ticket provider without requesting a new ticket from
the ticket provider, the last-issued-ticket value repre-
senting a value of a last ticket actually issued by the
ticket provider to one of the plurality of processes;

compare the current-owner value and the last-issued-ticket
value;

based upon the comparison, request a ticket for the second

process from the ticket provider when a difference
between the last-issued-ticket value and the current-
owner value is equal to or smaller than the selected
number of allowed concurrent processes; and

based upon the comparison, do not request a ticket for the

second process from the ticket provider when the differ-
ence between the last-issued-ticket value and the cur-
rent-owner value is greater than the selected number of
allowed concurrent processes.

2. The memory device of claim 1, wherein a process may
access the shared resource immediately by taking a ticket
when the last-issued-ticket value is equal to one less than
current-owner value.

US 9,158,597 B2

9

3. The memory device of claim 1, wherein a process will
not achieve immediate access to the shared resource when the
last-issued-ticket value is other than one less than the current-
owner value.

4. The memory device of claim 1, wherein obtaining the
last-issued-ticket value does not require reading a current
ticket value at the ticket provider.

5. The memory device of claim 1, wherein the ticket pro-
vider is a hardware atomic unit.

6. A system, comprising:

a processor having a plurality of execution units; and

a memory coupled to the processor, the memory having

program instructions stored thereon that, upon execution

by the processor, cause the system to:

assign a current-owner value to a shared resource, the
current-owner value identifying a ticket value that is
eligible to be granted current access to the shared
resource;

issue a first ticket value to a first process by a ticket
provider, the ticket provider configured to issue ticket
values that are used to determine access to the shared
resource;

allow the first process to access the shared resource
when a difference between the first ticket value and
the current-owner value is equal to or smaller than a
selected number of allowed concurrent processes,
wherein the selected number of allowed concurrent
processes is greater than one;

increment the current-owner value when the first process
has finished accessing the shared resource;

obtain, by a second process, a last-issued-ticket value
from the ticket provider without requesting a new
ticket from the ticket provider, the last-issued-ticket
value representing a value of a last ticket actually
issued by the ticket provider to one of the plurality of
processes;

compare the current-owner value and the last-issued-
ticket value;

based upon the comparison, request a ticket for the sec-
ond process from the ticket provider when a differ-
ence between the last-issued-ticket value and the cur-
rent-owner value is equal to or smaller than the
selected number of allowed concurrent processes; and

based upon the comparison, do not request a ticket for
the second process from the ticket provider when the
difference between the last-issued-ticket value and
the current-owner value is greater than the selected
number of allowed concurrent processes.

7. The system of claim 6, wherein the execution units
receive a unique ticket number from the hardware atomic unit

10

15

20

25

30

35

40

45

10

and are permitted access to the shared resource when the
unique ticket number matches the owner value.

8. The system of claim 6, wherein the execution units are
selected from one or more of threads, applications, and pro-
cesses.

9. The system of claim 6, wherein the system further com-
prises a storage device storing the last-issued-ticket value and
the current-owner value, wherein the storage device is
selected from a direct-map cache location, a hardware regis-
ter, or a memory location.

10. A method, comprising:

assign a current-owner value to a shared resource, the

current-owner value identifying a ticket value that is
eligible to be granted current access to the shared
resource;

issuing a first ticket value to a first process by a ticket

provider, the ticket provider configured to issue ticket
values that are used to determine access to the shared
resource;
allow the first process to access the shared resource when a
difference between the first ticket value and the current-
owner valueis equal to or smaller than a selected number
of allowed concurrent processes, wherein the selected
number of allowed concurrent processes is greater than
one;
incrementing the current-owner value when the first pro-
cess has finished accessing the shared resource;

obtaining, by a second process, a last-issued-ticket value
from the ticket provider without requesting a ticket from
the ticket provider, the last-issued-ticket value repre-
senting a value of a last ticket actually issued by the
ticket provider to one of the plurality of processes;

comparing the current-owner value and the last-issued-
ticket value;

based upon the comparison, requesting a ticket for the

second process from the ticket provider when a differ-
ence between the last-issued-ticket value and the cur-
rent-owner value is equal to or smaller than a selected
number of allowed concurrent processes; and

based upon the comparison, not requesting a ticket for the

second process from the ticket provider when the differ-
ence between the last-issued-ticket value and the cur-
rent-owner value is greater than the selected number of
allowed processes.

11. The method of claim 10, wherein obtaining the last-
issued-ticket value does not require reading a current ticket
value at the ticket provider.

12. The method of claim 10, wherein the ticket provider is
a hardware atomic unit.

#* #* #* #* #*

